
Model-Based Testing
with Kristian Karl



Who am I?

● Programming software since 1990
● Started with testing 1994
● Started with automation 1994
● Discovered Model-Based Testing 2004
● Open source project GraphWalker 2005
● Test Manager at Spotify 2010



Agenda - topics to cover in unordered fashion

● Why Model-Based Testing? 
● When to use it? 
● When not to use it? 
● What is it good for?



[Very] [and unscientific] brief history of MBT

● 15 May, 1997
Software Quality Week Conference in May, 1997
http://www.geocities.ws/model_based_testing/sqw97.pdf

● 13:52, 30 December 2004
First edit in Wikipedia
https://en.wikipedia.org/wiki/Model-based_testing

● I met Harry Robinson May 2004
http://www.harryrobinson.net/

http://www.geocities.ws/model_based_testing/sqw97.pdf
http://www.geocities.ws/model_based_testing/sqw97.pdf
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Model-based_testing
http://www.harryrobinson.net/
http://www.harryrobinson.net/


What is Model-Based Testing? 

MBT is an application of model-based design for 
designing and optionally also executing artifacts to 
perform software testing or system testing. Models 
can be used to represent the desired behavior of a 
System Under Test, or to represent testing strategies 
and a test environment.

https://en.wikipedia.org/wiki/Model-based_testing



What is Model-Based Testing? 

Models can be used to represent the [expected] 
desired behavior of a System Under Test [SUT].

A model is much simpler than the SUT.

State models are a set of states and events and the 
relationship between them.



Vertex, node, state

● Represents an expected state that we can verify.
● In the automation code, here is where you'll find the 

assertions, the oracles, the verification of the state(s).

Vertex VertexEdge



Edge, transition

● Represents the transition from one state to another state.
● It’s whatever action is needed, to make it to some other 

state. It could be selecting some menu choice, clicking a 
button, or making a REST API call, or even a timeout.

Vertex VertexEdge



A pair of an action, and a result is a combined step

Application is 
not running

Application 
is runningStart app

Combined step of an edge and vertex

Multiple steps are a path, or a test sequence



The Relationship Game



Login feature on Spotify desktop app

● As a user, when starting the app and entering 
correct credentials, I expect the Browse page. 

● As a user, when using stored credentials, I expect 
the Browse page displayed, without being asked 
for credentials.

● As a user entering invalid credentials, I expect not 
to be logged in.















e_Init → v_ClientNotRunning → e_StartCliente_Init → v_ClientNotRunning → e_StartClient → 
v_LoginPrompted → e_ValidPremiumCredentials
e_Init → v_ClientNotRunning → e_StartClient → 
v_LoginPrompted → e_ValidPremiumCredentials → 
v_Browse → e_Logout → v_LoginPrompted → 
e_ToggleRememberMe → v_LoginPrompted → 
e_Close → v_ClientNotRunning → e_StartClient 
→ v_Browse → e_Logout → v_LoginPrompted → ...

Test path generation

e_Inite_Init → v_ClientNotRunninge_Init → v_ClientNotRunning → e_StartClient → 
v_LoginPrompted





The Petclinic

http://localhost:9966/petclinic/














Demo of running the Petclinic GraphWalker MBT Test



It’s all about da code
● Create a boiler plate project

mvn archetype:generate -B -
DarchetypeGroupId=org.graphwalker -
DarchetypeArtifactId=graphwalker-maven-
archetype -DgroupId=com.company -
DartifactId=myProject

● Compile and run it
mvn graphwalker:test



It’s all about da code
● GraphWalker Maven plugin

graphwalker:generate-sources
graphwalker:generate-test-sources

● Models in:
src/main/resources/<package>
src/test/resources/<package>

● Generated Interfaces in:
target/generated-sources/grahwalker<package>
target/generated-test-sources/grahwalker<package>



What is, and what does graphwalker do?

● MIT licensed, open source project
since 2005

● Made by testers
● Reads graphml, json and simple dot files
● Generates path sequences, either offline or online
● Concept of stop conditions
● Multi model support



...and what does it not do?
● It does not interact with the

system under test.
● It has no graph editor. Yet...
● It has no working shortest all paths generator.
● It has no native support for anything besides of 

java. (But there is Python implementation)
● It has no elaborate reporting of results - it’s up to 

the developer to implement that.



offline

● Generate a path once, use many times
● Covers the same path every execution
● Predictable runtimes
● Needs an adapter to run the path



online

● Generates path at runtime
● Random permutations created each time
● Unpredictable runtimes
● No need for an adapter to run the path



generator

● A Star
● Random
● Quick Random
● Weighted Random
● Combined



stop condition

● Edge Coverage
● Vertex Coverage
● Requirement Coverage
● Reached Edge
● Reached Vertex
● Time
● Length



Some words about the workflow



Whe
re 

do
es 

MBT
 fi

t?





A little bit about automation @Spotify

● Unit tests of course
● iOS, Android, Desktop and WEB
● For mobile and desktop, we write our own test drivers
● Build Verification Tests

Runs in build pipe lines
● Optional pipe line tests - On Demand

Triggered by keyword in commit
● Outside of pipe line tests - Triggered på time, runs 24/7



Elastic Search







Results, results and more results...













http://www.youtube.com/watch?v=IGQmdoK_ZfY


Where automation fails...

https://community.spotify.com/t5/Help-Desktop-Linux-Windows-Web/Spotify-Printing/td-p/1065478

https://community.spotify.com/t5/Help-Desktop-Linux-Windows-Web/Spotify-Printing/td-p/1065478
https://community.spotify.com/t5/Help-Desktop-Linux-Windows-Web/Spotify-Printing/td-p/1065478




What is it good for? - Burning equipment!



References
http://www.geocities.ws/model_based_testing/sqw97.pdf
https://en.wikipedia.org/wiki/Model-based_testing
http://www.harryrobinson.net/
http://graphwalker.org/
https://github.com/spotify/python-graphwalker
http://www.elasticsearch.org/
https://github.com/spotify/python-graphwalker
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/
http://testautomationpatterns.wikispaces.com/
http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/

http://www.geocities.ws/model_based_testing/sqw97.pdf
http://www.geocities.ws/model_based_testing/sqw97.pdf
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Model-based_testing
http://www.harryrobinson.net/
http://www.harryrobinson.net/
http://graphwalker.org/
http://graphwalker.org/
https://github.com/spotify/python-graphwalker
https://github.com/spotify/python-graphwalker
http://www.elasticsearch.org/
http://www.elasticsearch.org/
https://github.com/spotify/python-graphwalker
https://github.com/spotify/python-graphwalker
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/
https://labs.spotify.com/2014/09/20/spotify-engineering-culture-part-2/
http://testautomationpatterns.wikispaces.com/
http://testautomationpatterns.wikispaces.com/
http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/
http://continuousdelivery.com/2014/02/visualizations-of-continuous-delivery/

