Hot-or-Not RUST
with Niko Matsakis

SOURCE OF YOUR TECHN(

Sioux 2018 | Confidential 2

Timetable

18:00h Introduction
18:03h Rust, part 1
19:30h Break
20:00h Rust, part 2
20:45h Q&A
21:00h Drinks

process: ex1t(0xBB);

\\\\\\nnlml”;;;J

7 \\\\\\\\\'\\\\\

Sioux 2018| Confidential 3

Sioux 2018 | Confidential = 4 =

Niko Matsakis will explain how Rust
helps us become more productive.

Hack without fear!

Rudl. React Fuedtier!

Nictolas Matsakid

(SafeYfast code
that works.

Safe 8o ®
Double free? @
Dangling pointers? o
Buffer overflow? @
Data races”? @

Safety =

Eat your spinach!

Photo credit: Sanjoy Ghosh
https://www.flickr.com/photos/sanjoy/4016632253/

h!

O
©
=

/8594532469/

im

irji

Salim V
//www. flickr.com/photos/sal

afety = Eat your sp

Photo credit

https

W

Saved by the compiler: Parallelizing a loop

with Rust and rayon

Eric Kidd on Thursday 20 Oct 2016

The Rust compiler just saved me from a nasty threading bug. | was
working on cage (our open source development tool for Docker apps with
lots of microservices), and | decided to parallelize the routine that
transformed docker-compose.yml files.

@ Faraday

that works.

Fast

Zero-cost abstractions:

High-level code, low-level efficiency

No compiler heroics needed
No garbage collector:

Predictable, memory usage; N0 pauses

Apply techniques to other resources (sockets, etc)
Indeed, no mandatory runtime at all:

Embedded, WASM, or standalone libraries

Performance

class ::String leby:
def blank? 964K iter/sec
/\All:space:]]*\z/ == self
end

end

static VALUE case 0x2005:
rb_str_blank_as(VALUE str) case 0x2006: Performance
1 case 0x2007: R
rb_encoding *enc; case 0x2008:
char xs, xe; case 0x2009:
case 0x200a:
enc = STR_ENC GET(str); case 0x2028:
s = RSTRING PTR(str); case 0x2029:
if (!'s || RSTRING_LEN(str) == 0) return Qtrue; case 0x202f: RUby:
case 0x205f: .
e = RSTRING_END(str); case 0x3000: 964K iter/sec

while (s < e) {
int n;
unsigned int cc = rb_enc_codepoint_len(s, e, &n, enc);

#if ruby _version_before_2 2()
case 0x180e:
#endif
/* found x/

switch
case
case
case
case
case
case
case
case
case
case
case
case
case
case

(cc) {
O:
Oxa:
Oxb:
Oxc:
Oxd:
0x20:
0x85:
Oxao:

0x1680:
0x2000:
0x2001:
0x2002:
0x2003:
0x2004:

https://github.com/SamSattron/tast_blank

}

defa

break;
ult:

return Qfalse:

S += N,

}

return Qtrue;

¥

110)'¢

e
10.5M iter/sec

Performance

. Ruby:
1§ 1St
C ::: blanl:;ng 964K iter/sec
/\Al[l[:space:]]*x\z/ == self C-
en:“d 10.5M iter/sec

extern “C” fn fast blank(buf: Buf) —> bool {
buf.as_slice().chars().all(|c| c.is_whitespace())

A T T

Get Rust Get iterator over Are all characters
string slice each character whitespace”?

Rust:
11M iter/sec

High-level, zero-cost abstractions

Tn is_whitespace (text: &str) = bool { |
 text.chars() |
all(\c| C.1is whltespace())

i

fn 1oad. 1mages(paths ‘&[PathBufl) —> Vec<Image> {

paths.par_iter() :
.map(|path| Image::load(path))
.collect()

' CARGO Browse All Crates Docs v Log in with GitHub

» packages for Rust

The Rust community’s crate host

* Getting Started

Y Install Cargo

Rust:
Safe,, fast code
thaflworks

)
A \
4
v

@ Documentation Install Community Contribute

Friends of Rust

(Organizations running Rust in production)

13

| liIke Rust because it Is boring.
— CJ Silverio, npom CTO

14

Open and welcoming

From http://jvns.ca/blog/2016/09/11/rustconf-keynote/

15

Ownership and Borrowing
Parallelism in Rust

Traits

Unsafe Rust

Rust in Production

drrowing

https://www.youtube.com/watch?v=Tnssn9KcWLg

Rust

Zero-cost abstractions

=

Memory safety & data-race freedom

18

Zero-cost abstractions

void example() {
vector<string> vector; <—— Stack and inline layout.

auto& elem = vector[0]; <«—— Lightweight references

1 <4— Deterministic destruction

vector Llength

Stack

Memory safety

void example() {

. Mutating the vector
vector<string> vector,

freed old contents.

*auto& elem = vector|0]; / “

vector.push_back(some_string);
cout << elem:

}

vector length
to freedenponttey: to same

memory.

Not just about memory allocation

union <
void *ptr;
uintptr_t integer;

}ou;

auto p = &u.ptr;
u.integer = 0x12345678,
use(xp); // uh-oh

21

~ Qunership and borrowing ~

Type Ownership Alias? Mutate?

T Owned v

fn main() {

let mut book = Vec::new();
book.push(..);
book.push(..);

publish(book) ; «—— Eive OWnNers

publish(book) ; «—— EfTOr-USE0

% book

Ownership

fn publish(book: Vec<String>) {

T

]hirﬁgved Take ownership
) of the vector

[1]

23

“Manual” memory management in Rust:

Values owned by creator.

| | Feels
Values moved via assignment.

Invisible.

When final owner returns, value is freed.

24

~ Qunershiyp and borrowing ~

Type Ownership Alias? Mutate?

T Owned v
&T Shared reference v

fn lender() { fn use(vec: &Vec<int>) {

let mut vec = Vec::new();
vec.push(1); a T
vec.push(2); } “Shared reference
use(&\%eC) ; to Vec<int>"

; Loan out vec

vec

A

.
.....
N, .®

Sharing “freezes” data (temporarily)

* let mut book = Vec::new():

book.push(..); <+—— Dpook mutable here

let r = &book; <+——— pook borrowed here

book. len(); <+— reading book™ ok while shared

book.push(..); <+—— cannot mutate while shared

adadadedeadadededendondond

<+—— cannot mutate through shared ret

r.push(..);

N N N N N N NI N AN

book. push(..) ; <«——— afterlastuse of r
' ‘book” is mutable again

27

~ Qunershiyp and borrowing ~

Type Ownership Alias? Mutate?
T Owned v
&T Shared reference v

&mut T Mutable reference v

fn main() { fn edit(book: &mut Vec<String>) {
let mut book = Vec::new(); book.push(..); T

book.push(..); }
book.push(..);

»edit(&mut book); <— Mutable borrow
edit(&mut book);

[string

Llength

Mutable reference
to a vector

Mutable borrow "

Mutable references: no other access

* let mut book = Vec::new():

book.push(..); <+<—— Dpook mutable here

let r = &mut book; <+—— Dook borrowed here

book. len():

N N NI NI NI NI NI NI AN

<+—— cannot access while borrowed

r.push(..); <+— put can mutate through r

book.push(..); <+—— arter last use of r,
DOOK IS accessible again

30

~ Glosures ~

Definition: a closure 1s a callback that Just Works.
— 'T'he Reinvigorated Programmer

https://reprog.wordpress.com/2010/02/27/closures—finally—-explained/

fn main() {
* let mut counter
let mut closure
counter += 1;
s
closure();
counter += 1;

closure();
counter += 1; <+—— done using closure; ok

1
S

|| {| «— creates a closure
<+— closure borrows counter from
enclosing stack frame

<4—— cannot access while borrowed

ﬂ counter 0 12 3
A
\

32

~ Named hfetimes ~

T'here are 2 hard problems in computer science:
cache mvalidation, naming things, and oft-by-one
EITOTS.

— Leon Bambrick

impl<T> [T] {
fn sptEEZét_mut(
&'a mut self, <+— given a slice of T elements...
mid: usize, <+— and a midpoint
) — (&'a mut [T], &'a mut [T]) { «— divide slice into two

1 self: &mut [i32] fn foo(vec: &mut [T]) {

(@ w]e]efufm] Rl

T T h

} ‘vec' borrowed here
less: &mut [i32] greater: &mut [i32] while 'less anad
‘greater still In use

34

const git _tree_entry x

git_tree_entry_byname(const git_tree xtree,

const char xfilename):

This returns a git_tree_entry that is owned by the
git_tree. You don't have to free it, but you must not

use It after the git_tree is released.

impl Tree {

fn by _name<‘a>(&’'a self, filename: &str) —> &’a TreeEntry {
}

» Returns a reference derived from self ”

35

const git_tree_entry % Read-only, yes, but mutable
git_tree_entry byname(const git_tree xtree, | through an alias?

const char xfilename):

This returns a git_tree_entry that is owned by the

Will “git_tree_entry_byname
keep this pointer?

Start a thread using it?
git_tree. You don't have to free it, but you must not

use It after the git_tree is released.

impl Tree {
fn by _name<‘a>(&’'a self, filename: &str) —> &’a TreeEntry {
—
Borrowed string
} Does not escape by_name’

1 Immutable while "by_name executes

36

PRI TR T N I e

i
A

ﬁ‘ b . o

o
ol Vi

(
3
!
/
!
;

NSO
s ; s

A '.:'J-l:
<) \"

Photo credit: Dave
https: //www‘ i

‘Must be this
tall to write
multi-threaded
code”

David Baron

Mozilla

Distinguished

-ngineer

33

Data races

TR U CLEEERRT Actor-based languages

+ LELIT LIS IR ERTLY Functional languages

+ TEL TR EEY Sequential programming

Data race

39

Data races

Sharing Rust: No sharing ano

mutation at the same time.
Mutation

No ordering j S/Ci;rﬂe\g{c;rce oraering

Data race

40

Go Code

Observation:

Building parallel abstractions is easy.
Misusing those abstractions is also easy.

func fool(..) {

m := make(mapl[string]string)

m[“Hello”] = “World”

channel <- m <+— send data over channel
m[“Hello”] = "“Data Race” <«—— buthow to stop sender from

} using it afterwards?

41

>

fn foo(..) {
let m = HashMap::new();
m.insert(“Hello”, “World”):
channel.send(m);
m.insert(“Hello”, “Data Race”):

} N N N N N N)))))))))))))) N N NI NI NI N

N

Error: use of moved
value: book

impl<T> Channel<T> {
fn send(&mut self, data: T) {

T

Take ownership
of the data

42

~ Concurrency paradigms ~

Paradigm Ownership? Borrowing?

Message passing v
Locking v v

fn sync_inc(mutex: &Mutex<i32>) {
e
let mut guard: Guard<i32> = counter. lock():
I*guard += 1;

}

https://commons.wikimedia.org/wiki/File:No-DRM_lock.svg

https://commons.wikimedia.org/wiki/File:No-DRM_lock.svg

~ Concurrency paradigms ~

Paradigm Ownership? Borrowing?
Message passing v
Locking v v

N

Fork join

fn divide_and_conquer(..) 1
rayon::join(
|| do_something(),
|| do_something_else(),
) ;
}

]

Conceptually:
- Start two threads
- Wait for them to finish

40

fn qsort(vec: &mut [132]) {
if vec.len() <= 1 { return; }
* let pivot = vecl[random(vec.len())];
let mid = vec.partition(vec, pivot);
let (less, greater) = vec.split_at_mut(mid);
gsort(less);
gsort(greater);

vec: &mut [i32]

A
i

less: &mut [i32] greater: &mut [1i32]

fn qsort(vec: &mut [132]) {

if vec.len() <= 1 { return; }

let pivot = vec[random(vec.len())];

let mid = vec.partition(vec, pivot);

let (less, greater) = vec.split_at_mut(mid);

rayon::join(
|| gqsort(less), L
|| gsort(greater) rayon: :join!

) - || gqsort(less), t,

|| gsort(less), =

} N N N N NI NI NI NI AN
n

A L

fe) | Tl | 121 | (31 | L | In

less: &mut [i32] greater: &mut [i32]

~ Concurrency paradigms ~

Paradigm Ownership? Borrowing?
Message passing v

Locking v v

Fork join v
Lock-free v v
Futures v v

TTEURl TN IR AR
Weaan v hebne®

ter/26144
Pt iy

ivecompu

https://www.flickr.com/photos/creat

Photo credit: Andy Leppard

“Zero cost’ abstraction

'} vecl.iter() // vecl’s elements
.zip(vec2.iter()) // paired with vec2’s
.map(|(i, j)| 1 * j) // multiplied
.sum() // and summed

. LBBO_8:
movdqu (%rdi,%rbx,4), %xmml
movdqu (%rdx,%rbx,4), %xmm2
pshufd $245, %xmm2, %xmm3
pmuludg S%xmml, Sxmm2
pshufd $232, %Sxmm2, SXxmm2
pshufd $245, %xmml, Sxmml
pmuludg S%xmm3, S%xmml
pshufd $232, %xmml, Sxmml
punpckldg %xmml, S%xmm2
padddSxmm2, Sxmmo
addg $4, S%rbx
1ncqg %rax
jne .LBBO_8

Parallel execution

.zip(vec2.par_iter())
map(|(i, J)| 1 * j)
.sum()

Multicore (work stealing)
+ SIMD
+ Guaranteed thread safety

* Yes, we support

Implemented for a “multiparameter” traits too.

given type (‘Self‘)*

l

trait Iterator { A ted 1
type Item: «— Associated type

fn next(&mut self) —> Option<Self::Item>;

] T

Method that takes Reference to the
“&mut reference associated type

54

‘iter isof sometype T

1ter.next() that implements Iterator

Iterator::next(&mut iter) Option<T::Item>

'j_' |—|—|
“Auto-ref”

Associated type

Use method as a function

55

* struct Zip<A: Iterator, B: Iterator> {
a. A,
b: B,
}

56

struct Zip<A: Iterator, B: Iterator> {
a: A,
b: B,

v

impl<A: Iterator, B: Iterator> Iterator for Zip<A, B> {
type Item = (A::Item, B::Item);
fn next(&mut self) —> Option<(A::Item, B::Item)> {
match (self.a.next(), self.b.next()) {
(Some(a), Some(b)) => Some((a, b)),

=> None,

“Zero cost’ abstraction

vecl.iter() // vecl’'s elements
= .zip(vec2.iter()) // paired with vec2’s
.map(|(i, j)| 1 * j) // multiplied
.sum() // and summed

Default methods

trait Iterator {
// Required items
type Item;
fn next(&mut self) —> Option<Self::Item>;

// Provided 1items
fn zip<I>(self, other: I) —> Zip<Self, I>
where I: Iterator {
Zip { a: self, b: other }
}

>

impl<A: Iterator, B: Iterator> Iterator for Zip<A, B> {

At compilation time, will generate
fully specialized variants for each
valueof A, B.

Can also use traits as “types’:
Vec<&Iterator<Item=132>>

=> Dynamic dispatch, heterogeneity.

60

4 "{-;‘\'.-.' B
. L /"Il)" -
- ra .
} ';.’. : - a

APNETINEERG.

. P . - .
. ’ﬂq - _
2 b, o= : ‘- - - oyt . e o4 -
: : . . : - - >
o - <A : - Rt - s U
) N NP g L ﬁﬂk-“’ k‘ e e A - e - > . 2
: > — g - e e
- : 2 - o ’._ -
. - - 4
- - - -5 ~.-

L .y e . o e <y ~."‘,'..
. | e -~ — Ty - s AT .
T --:,‘._-MMMI:Z"S?W M, B T -“‘-‘-‘ ¥
- - 6~- ‘
. ' . e L . : -

Vision: An Extensible Language

Core language:
Ownership and borrowing
Libraries:

Reference-counting Use ownership/
W

Flles

| borrowing to enforce
Parallel execution

correct usage.

62

Safe abstractions

fn split_at mut(..) {

unsafe { \
b \ Validates input, etc.

Trust me.

Ownership/borrowing/traits give tools to
enforce safe abstraction boundaries.

63

9
@ @avadacatavra

Publishea to
analyze unsafe code usage in

Stylo (Parallel CSS Rendering — coming in FF57)
Total KLOC Unsafe KLOC Unsafe %

Total
Interesting stuff

FFI Bindings 67.4%

9:06 AM - 21 Sep 2017

22 Retweets 69 Likes e Q) &3 9 o 3 e vD

QO 1 11 22 QO 69 ™M

64

Mission accomplished
Rust in Firefox 48

STYLE

body {
color: grey;

hl {
color: blue;
font-size: 2em;
transform: skew(45deg);
will-change: transform;

. COMPUTED h
COMPUTED
STYLES
p {

margin-top: 2em; Code Cartoons

60

Bug 631527
Parallelize selector matching

NEW Assigned to dzbarsky
v Status (NEW bug with no priority)

Product: » Core

Component: » CSS Parsing and Computation
Status: NEW

Reported: 7 years ago

Reported: 7 years ago

oo 1° s~ i -~ « 1

v

Get help with this page

6/

h!

O
©
=

/8594532469/

im

irji

Salim V
//www. flickr.com/photos/sal

afety = Eat your sp

Photo credit

https

Initial load times (relative to today)

Amazon YouTlube YouTube (32 bit)

69

Gradual adoption

WOrks.

G Quantum Flow

C

Quantum CSS
(aka Stylo) Quantum
Render

/

Quantum
Compositor
Quantum DOM

o

70

el
@
~N
>—

cgh Vo!'n.c

WL ee——

Discovery

Discover the world of microcontrollers through Rust!

This book is an "introductory course" on microcontroller-based "embedded systems" that uses Rust
as the teaching language rather than the usual C/C++.

https://japaric.github.io/discovery/

/2

O C k Documentation Community Papers Hardware Blog

Programmable loT starts at the edge

An embedded operating system designed for running
multiple concurrent, mutually distrustful applications on
low-memory and low-power microcontrollers.

‘ Get started \ | Join the community |

Signhpost

The Signpost project is a modular city-
scale sensing platform that is designed
to be installed on existing signposts. It
Is powered through solar energy
harvesting, and provides six slots for
generic sensing tasks. Modules have
access to a set of shared platform
resources including power,
communication, gps-based location
and time, storage, and higher-
performance computation, and they
use a Signpost-specific software API
that enables not only use of these
resources, but also supports the
development of inter-module
applications.

|
\

s

e

- The project is driven by several core
anbplications. but also strives to be an unaradeable and adantable nlatform that sunpnorts new anblications for

it: DavidiMcSpad j
: flickr.com/photes/familyc

Rust Leadership Structure

Team
Core
Language
Libraries
Compiler
Dev Tools
Cargo
Infrastructure
Community
Documentation

Moderation

Members

O O O N O O

10
13

Peers

11

58 people

10 Mozilla (17%)

/0

Rust 1.0: Stability as a deliverable

Since the early days of Rust, there have only been
two things you could count on: safety, and change.

And sometimes not the first one.

Our responsibility [after 1.0] is to ensure
that you never dread upgrading Rust.

~ [he feature prpeline ~

RFC — Nightly —> Beta —> Stable

RFC Process

unions #1444 i

Gl el nikomatsakis merged 14 commits into rust-lang:master from joshtriplett:untagged_union on Apr 8, 2016

weanversy - Sypport defining C-compatible variadic functions in Rust Edit
m 1 #2137

sV Gl el aturon merged 25 commits into rust-lang:master from joshtriplett:variadic 18 days ago

R

£ (&’ Conversation 134 -O- Commits 25 Files changed 1 +265 -0 INEEE
t

u -

id > joshtriplett commented on Sep 2 « edited by aturon Member +(%) 4 Reviewers

provides any kind of type safety. This proposal exists primarily to allow Rust
to provide interfaces callable from C code. AWl cramertj

A eddyb -
Support defining C-compatible variadic functions in Rust, via new intrinsics.
Pd : e . : @ kennytm [
] Rust currently supports declaring external variadic functions and calling them
5 from unsafe code, but does not support writing such functions directly in Rust. Q tomwhoiscontrary [
Adding such support will allow Rust to replace a larger variety of C libraries, % jethrogb =
R¢ avoid requiring C stubs and error-prone reimplementation of platform-specific T
code, improve incremental translation of C codebases to Rust, and allow . xfix -
implementation of variadic callbacks. M plietar -
This RFC does not propose an interface intended for native Rust code to pass ubsan (]
variable numbers of arguments to a native Rust function, nor an interface that L
_ fstirlitz [J
(]

~ [he feature prpeline ~

RFC — Nightly —> Beta —> Stable

s

Unstable features
are available

~ [he feature prpeline ~

RFC — Nightly —> Beta —> Stable

et

6 week release cycle;
only stable features

The Rust Roadmap

A process for establishing the Rust roadmap

WXel*-Iil brson wants to merge 8 commits into rust-lang:master from brson:north-star

(4 Conversation 55 -0- Commits 8 Files changed 1

a brson commented 16 days ago The Rust Programming Languag

A refinement of the Rust planning and reporting process, to establish a shared
vision of the project among contributors, to make clear the roadmap toward that
vision, and to celebrate our achievements.

The primary outcome for these changes to the process are that we will have a
consistent way to:

e Decide our project-wide goals through consensus.
e Advertise our goals as a published roadmap.

e Celebrate our achievements with an informative publicity-bomb.

Rendered.

L1 Fa @7

@ The Rust Programming Language Blog

New Year's Rust: A Call for Community
~ Blogposts

You can write up these posts and email them to community@rust-lang.org or
tweet them with the hashtag #Rrust2018 . We'll aggregate any blog posts sent
via email or with the hashtag in one big blog post here.

Last year, the Rust team started a new tradition: defining a roadmap of goals for the upcoming year. We
leveraged our RFC process to solicit community feedback. While we got a lot of awesome feedback on
that RFC, we'd like to try something new in addition to the RFC process: a call for community blog
posts for ideas of what the goals should be.

83

Want to learn more?

B OREILLY

Programming

R L.;l :S —

FAST, SAFE SYSTEMS DEVELOPMEN W ‘ R t?
vy oK y
.\:‘\ Ny ‘,'k"

' ﬁ::‘_ Trustworthy, Concur
} Systems Progra mmi g

O’Reilly

Order now!

1
THE RUST
PROGRAMMING
LANGUAGE

rust-lang.org

Book, 2nd ed.

iIntorust.com

Screencasts

84

http://intorust.com
http://rust-lang.org

Q&A

Rust - Hot-or-Not?

Sioux 2018 | Confidential = 2 =

Thank you!

NIKO MATSAKIS @ HOT-OR-NOT

3

i
=
=
<8}
i)
4=
=
o
@)
(e0]
i
(@]
N
x
>
2
n

Get In touch

e January 16 Proefzitten | Seats to meet

e February 27/28 & Embedded World,
March 1 booth: 3-637

 March 20 Proefzitten | Seats to meet

WWW.SIoUX.eu

ioux 2018 | Confidential

Sioux 2018 | Confidential = 5 =

Source of
your technology

WWW.Sioux.eu

