
Hot-or-Not RUST
with Niko Matsakis

Author: Bart Sanders, Manager Embedded Control Software Discipline January 8th, 2018

Sioux 2018 | Confidential 2

Timetable

18:00h Introduction

18:03h Rust, part 1

19:30h Break

20:00h Rust, part 2

20:45h Q & A

21:00h Drinks

process::exit(0xBB);

Sioux 2018| Confidential 3

Sioux 2018 | Confidential 4

Niko Matsakis will explain how Rust
helps us become more productive.

Sioux 2018 | Confidential 5

Hack without fear!

1

Rust: Reach Further!
Nicholas Matsakis

2

Safe, fast code
that works.

Rust:

3

Safe

Double free?

Buffer overflow?
Dangling pointers?

Data races?

GC

😱

😱

😱

😱

😀

😀

😀

😱

😎

😎

😎

😎

4

Safety =

Eat your spinach!

Photo credit: Sanjoy Ghosh
https://www.flickr.com/photos/sanjoy/4016632253/

5Photo credit: Salim Virji
https://www.flickr.com/photos/salim/8594532469/

Safety = Eat your spinach!

6

The Rust compiler just saved me from a nasty threading bug. I was
working on cage (our open source development tool for Docker apps with
lots of microservices), and I decided to parallelize the routine that
transformed docker-compose.yml files.

7

Safe, fast code
that works.

Rust:

8

Fast
Zero-cost abstractions:

High-level code, low-level efficiency

No garbage collector:
Predictable, memory usage; no pauses

No compiler heroics needed

Apply techniques to other resources (sockets, etc)
Indeed, no mandatory runtime at all:

Embedded, WASM, or standalone libraries

9

Performance

class ::String
 def blank?
 /\A[[:space:]]*\z/ == self
 end
end

Ruby:
964K iter/sec

static VALUE
rb_str_blank_as(VALUE str)
{
 rb_encoding *enc;
 char *s, *e;

 enc = STR_ENC_GET(str);
 s = RSTRING_PTR(str);
 if (!s || RSTRING_LEN(str) == 0) return Qtrue;

 e = RSTRING_END(str);
 while (s < e) {
 int n;
 unsigned int cc = rb_enc_codepoint_len(s, e, &n, enc);

 switch (cc) {
 case 9:
 case 0xa:
 case 0xb:
 case 0xc:
 case 0xd:
 case 0x20:
 case 0x85:
 case 0xa0:
 case 0x1680:
 case 0x2000:
 case 0x2001:
 case 0x2002:
 case 0x2003:
 case 0x2004:

 case 0x2005:
 case 0x2006:
 case 0x2007:
 case 0x2008:
 case 0x2009:
 case 0x200a:
 case 0x2028:
 case 0x2029:
 case 0x202f:
 case 0x205f:
 case 0x3000:
#if ruby_version_before_2_2()
 case 0x180e:
#endif
 /* found */
 break;
 default:
 return Qfalse;
 }
 s += n;
 }
 return Qtrue;
}

Performance

Ruby:
964K iter/sec

C:
10.5M iter/sec

10x!

https://github.com/SamSaffron/fast_blank

Performance

11

class ::String
 def blank?
 /\A[[:space:]]*\z/ == self
 end
end

extern “C” fn fast_blank(buf: Buf) -> bool {
 buf.as_slice().chars().all(|c| c.is_whitespace())
}

Get Rust
string slice

Get iterator over
each character

Are all characters
whitespace?

Rust:
11M iter/sec

Ruby:
964K iter/sec

C:
10.5M iter/sec

12

High-level, zero-cost abstractions
fn is_whitespace(text: &str) -> bool {
 text.chars()
 .all(|c| c.is_whitespace())
}

fn load_images(paths: &[PathBuf]) -> Vec<Image> {
 paths.par_iter()
 .map(|path| Image::load(path))
 .collect()
}

13

Safe, fast code
that works.

Rust:

14

I like Rust because it is boring.
— CJ Silverio, npm CTO

15From http://jvns.ca/blog/2016/09/11/rustconf-keynote/

Open and welcoming

16

Ownership and Borrowing

Parallelism in Rust

Rust in Production

Unsafe Rust

Traits

17

Ownership and Borrowing
Photo Credit: Nathan Kam
https://www.youtube.com/watch?v=Tnssn9KcWLg

https://www.youtube.com/watch?v=Tnssn9KcWLg

18

Zero-cost abstractions

Memory safety & data-race freedom

+

=
Rust

Zero-cost abstractions
void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 …
}

string[0]

…elem

vector

data

length

capacity

[0]

[n]

[…]

…

‘H’

…

‘e’

Stack and inline layout.

Lightweight references

Deterministic destruction

Stack HeapC++

void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 vector.push_back(some_string);
 cout << elem;
}

vector

data

length

capacity

[0]

…

[0]

[1]

elem
Aliasing: more than
one pointer to same
memory.

Dangling pointer: pointer
to freed memory.

Mutating the vector
freed old contents.

C++

Memory safety

21

Not just about memory allocation

union {
 void *ptr;
 uintptr_t integer;
} u;

auto p = &u.ptr;
u.integer = 0x12345678;
use(*p); // uh-oh

Type Ownership Alias? Mutate?

T Owned ✓

~ Ownership and borrowing ~

fn main() {
 let mut book = Vec::new();
 book.push(…);
 book.push(…);
 publish(book);

}

fn publish(book: Vec<String>) {
 …
}

Ownership

Take ownership
of the vector

23

Error: use of moved
value: `book`

String

book

data

length

capacity

[0]

[1]

data

length

capacity

~~~~~~~~~~~
Give ownership.

publish(book);



24

“Manual” memory management in Rust:

Values owned by creator.

Values moved via assignment.

When final owner returns, value is freed.

Feels 
invisible.]



~ Ownership and borrowing ~

Type Ownership

T

Alias? Mutate?

Owned ✓ 

&T Shared reference ✓ 



fn lender() { 
  let mut vec = Vec::new(); 
  vec.push(1); 
  vec.push(2); 
  use(&vec); 
  … 
}

fn use(vec: &Vec<int>) { 

  
} 

1

2vec

data

length

capacity

vec

“Shared reference
to Vec<int>”

Loan out vec

… 



~~~~~~~~~

let mut book = Vec::new();

book.push(…);

let r = &book;

book.len();

book.push(…);

r.push(…);

book.push(…);

reading `book` ok while shared
cannot mutate while shared

27

Sharing “freezes” data (temporarily)

`book` mutable here

~~~~~~~~~~~

`book` borrowed here

after last use of `r`,  
`book` is mutable again

cannot mutate through shared ref



~ Ownership and borrowing ~

Type Ownership

T

&T

Alias? Mutate?

Owned

Shared reference

✓ 

✓ 

&mut T Mutable reference ✓ 



fn main() { 
  let mut book = Vec::new(); 
  book.push(…); 
  book.push(…); 
  edit(&mut book); 
  edit(&mut book); 
}

fn edit(book: &mut Vec<String>) { 
  book.push(…); 
} 

Mutable borrow

 Mutable reference 
to a vector

29

String

book

data

length

capacity

[0]

[1]

book

[2]

 Mutable borrow

[3]



cannot access while borrowed

but can mutate through `r`

30

Mutable references: no other access

book mutable here

~~~~~~~~~

book borrowed here

after last use of `r`,  
book is accessible again

let mut book = Vec::new();

book.push(…);

let r = &mut book;

book.len();

r.push(…);

book.push(…);

31

Definition: a closure is a callback that Just Works.
— The Reinvigorated Programmer

https://reprog.wordpress.com/2010/02/27/closures-finally-explained/

~ Closures ~

32

0counter

creates a closure
closure borrows `counter` from
enclosing stack frame

closure

1

cannot access while borrowed

done using closure; ok

2 3

~~~~~~~~~~~

fn main() { 
  let mut counter = 0; 
  let mut closure = || { 
    counter += 1; 
  }; 
  closure(); 
  counter += 1; 
  closure(); 
  counter += 1; 
}



33

There are 2 hard problems in computer science: 
cache invalidation, naming things, and off-by-one 
errors. 
— Leon Bambrick

~ Named lifetimes ~



34

impl<T> [T] { 
  fn split_at_mut( 
    &’a mut self, 
    mid: usize, 
  ) -> (&’a mut [T], &’a mut [T]) { 
    … 
  } 
}

given a slice of T elements…

[0] [1] [2] [3] […] [n]

self: &mut [i32]

less: &mut [i32] greater: &mut [i32]

and a midpoint
divide slice into two

fn foo(vec: &mut [T]) { 
  let (less, greater) = 
    vec.split_at_mut(3); 
  … 
} `vec` borrowed here 

while `less` and 
`greater` still in use



35

const git_tree_entry *  
git_tree_entry_byname(const git_tree *tree, 
                      const char *filename);

This returns a git_tree_entry that is owned by the 
git_tree. You don't have to free it, but you must not 
use it after the git_tree is released.

impl Tree { 
  fn by_name<‘a>(&’a self, filename: &str) -> &’a TreeEntry { 
    .. 
  } 
} “Returns a reference derived from `self`”



impl Tree { 
  fn by_name<‘a>(&’a self, filename: &str) -> &’a TreeEntry { 
    .. 
  } 
}

36

const git_tree_entry *  
git_tree_entry_byname(const git_tree *tree, 
                      const char *filename);

This returns a git_tree_entry that is owned by the 
git_tree. You don't have to free it, but you must not 
use it after the git_tree is released.

Borrowed string 
Does not escape `by_name` 
Immutable while `by_name` executes

Read-only, yes, but mutable 
through an alias?

Will `git_tree_entry_byname` 
keep this pointer? 
Start a thread using it?



37

Parallelism

Photo credit: Dave Gingrich 
https://www.flickr.com/photos/ndanger/2744507570/



38

“Must be this 
tall to write 

multi-threaded 
code”

David Baron 
Mozilla Distinguished Engineer



Data races

Sharing

Mutation

No ordering

Data race
39

Actor-based languages

Functional languages

Sequential programming



Data races

Sharing

Mutation

No ordering

Data race
40

(Or enforce ordering  
via API.)

Rust: No sharing and 
mutation at the same time.



41

Observation:
Building parallel abstractions is easy.
Misusing those abstractions is also easy.

func foo(…) { 
  m := make(map[string]string) 
  m[“Hello”] = “World” 
  channel <- m 
  m[“Hello”] = “Data Race” 
}

send data over channel
but how to stop sender from 
using it afterwards?

G
o 

C
od

e



42

fn foo(…) { 
  let m = HashMap::new(); 
  m.insert(“Hello”, “World”); 
  channel.send(m);  
  m.insert(“Hello”, “Data Race”); 
}

impl<T> Channel<T> { 
  fn send(&mut self, data: T) { 
    … 
  } 
} 

Take ownership 
of the data

Error: use of moved 
value: `book`

~~~~~~~~~~~~~~~~~~~~~~~~~~


~ Concurrency paradigms ~

Paradigm

Message passing

Ownership? Borrowing?

✓
Locking ✓ ✓

0

fn sync_inc(mutex: &Mutex<i32>) {
 let mut guard: Guard<i32> = counter.lock();
 *guard += 1;
}

https://commons.wikimedia.org/wiki/File:No-DRM_lock.svg

1
mutex

guard

https://commons.wikimedia.org/wiki/File:No-DRM_lock.svg

~ Concurrency paradigms ~

Paradigm

Message passing

Ownership? Borrowing?

✓
Locking ✓ ✓
Fork join ✓

46

fn divide_and_conquer(…) {
 rayon::join(
 || do_something(),
 || do_something_else(),
);
}

Conceptually:
- Start two threads
- Wait for them to finish

[0] [1] [2] [3] […] [n]

vec: &mut [i32]

less: &mut [i32] greater: &mut [i32]

fn qsort(vec: &mut [i32]) {
 if vec.len() <= 1 { return; }
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.split_at_mut(mid);
 qsort(less);
 qsort(greater);
}

fn qsort(vec: &mut [i32]) {
 if vec.len() <= 1 { return; }
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.split_at_mut(mid);
 rayon::join(
 || qsort(less),
 || qsort(greater),
);
}

[0] [1] [2] [3] […] [n]

vec: &mut [i32]

less: &mut [i32] greater: &mut [i32]

 rayon::join(
 || qsort(less),
 || qsort(less),
);

?~~~~~~~~~

~ Concurrency paradigms ~

Paradigm

Message passing

Ownership? Borrowing?

✓
Locking
Fork join

✓ ✓

✓
Lock-free
Futures
…

✓ ✓

✓ ✓

50

Traits

Photo credit: Andy Leppard
https://www.flickr.com/photos/creativecomputer/261445720/

vec1.iter() // vec1’s elements
 .zip(vec2.iter()) // paired with vec2’s
 .map(|(i, j)| i * j) // multiplied
 .sum() // and summed

“Zero cost” abstraction

.LBB0_8:
 movdqu (%rdi,%rbx,4), %xmm1
 movdqu (%rdx,%rbx,4), %xmm2
 pshufd $245, %xmm2, %xmm3
 pmuludq %xmm1, %xmm2
 pshufd $232, %xmm2, %xmm2
 pshufd $245, %xmm1, %xmm1
 pmuludq %xmm3, %xmm1
 pshufd $232, %xmm1, %xmm1
 punpckldq %xmm1, %xmm2
 paddd %xmm2, %xmm0
 addq $4, %rbx
 incq %rax
 jne .LBB0_8

Parallel execution

vec1.par_iter()
 .zip(vec2.par_iter())
 .map(|(i, j)| i * j)
 .sum()

Multicore (work stealing)
+ SIMD
+ Guaranteed thread safety

54

trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

Implemented for a
given type (`Self`)

Associated type

Method that takes
`&mut` reference

Reference to the
associated type

✴ Yes, we support
“multiparameter” traits too.

✴

55

iter.next()

Iterator::next(&mut iter) Option<T::Item>

`iter` is of some type `T`
that implements `Iterator`

Use method as a function
Associated type

“Auto-ref”

56

struct Zip<A: Iterator, B: Iterator> {
 a: A,
 b: B,
}

struct Zip<A: Iterator, B: Iterator> {
 a: A,
 b: B,
}

impl<A: Iterator, B: Iterator> Iterator for Zip<A, B> {
 type Item = (A::Item, B::Item);
 fn next(&mut self) -> Option<(A::Item, B::Item)> {
 match (self.a.next(), self.b.next()) {
 (Some(a), Some(b)) => Some((a, b)),
 _ => None,
 }
 }
}

vec1.iter() // vec1’s elements
 .zip(vec2.iter()) // paired with vec2’s
 .map(|(i, j)| i * j) // multiplied
 .sum() // and summed

“Zero cost” abstraction

trait Iterator {
 // Required items
 type Item;
 fn next(&mut self) -> Option<Self::Item>;

 // Provided items
 fn zip<I>(self, other: I) -> Zip<Self, I>
 where I: Iterator {
 Zip { a: self, b: other }
 }

 …
}

Default methods

60

impl<A: Iterator, B: Iterator> Iterator for Zip<A, B> {
 …
}

At compilation time, will generate
fully specialized variants for each
value of `A`, `B`.

Can also use traits as “types”:
Vec<&Iterator<Item=i32>>

=> Dynamic dispatch, heterogeneity.

61

Unsafe

62

Vision: An Extensible Language
Core language:

 Ownership and borrowing

Libraries:
 Reference-counting

 Files

 Parallel execution

 …

Use ownership/
borrowing to enforce
correct usage.]

Safe abstractions

unsafe {
 …
}

Ownership/borrowing/traits give tools to
enforce safe abstraction boundaries.

Trust me.

fn split_at_mut(…) {

}

Validates input, etc.

63

64

Stylo (Parallel CSS Rendering — coming in FF57)

Total KLOC Unsafe KLOC Unsafe %
Total 146.2 51.7 35%

Interesting stuff 71.6 1.4 1.9%
FFI Bindings 74.5 50.3 67.4%

65

66

67

68Photo credit: Salim Virji
https://www.flickr.com/photos/salim/8594532469/

Safety = Eat your spinach!

69

0

25

50

75

100

Amazon YouTube YouTube (32 bit)

Initial load times (relative to today)

Amdahl’s LinePa
ge
 L
ay
ou

t

Ot
he
r
stu

ff

70

Gradual adoption
works.

71Embedded

72
https://japaric.github.io/discovery/

73

74

75

Community

Photo credit: David McSpadden
https://www.flickr.com/photos/familyclan/15535822737/

76

Rust Leadership Structure
Team Members Peers

Core 9
Language 6 5
Libraries 7 1
Compiler 9
Dev Tools 6 11
Cargo 6
Infrastructure 10
Community 13
Documentation 4
Moderation 5

58 people
10 Mozilla (17%)

Our responsibility [after 1.0] is to ensure
that you never dread upgrading Rust.

Since the early days of Rust, there have only been
two things you could count on: safety, and change.

And sometimes not the first one.

Rust 1.0: Stability as a deliverable

RFC Nightly Beta Stable

~ The feature pipeline ~

79

RFC Process

RFC Nightly Beta Stable

Unstable features
are available

{

~ The feature pipeline ~

~ The feature pipeline ~

RFC Nightly Beta Stable

6 week release cycle;
only stable features

{

The Rust Roadmap

83

84

Want to learn more?

intorust.comrust-lang.orgO’Reilly
Book, 2nd ed. ScreencastsOrder now!

http://intorust.com
http://rust-lang.org

Q & A

Rust - Hot-or-Not?

Sioux 2018 | Confidential 2

Thank you!

Sioux 2018 | Confidential 3

© Sioux 2018 | Confidential 4

Get in touch

• January 16 Proefzitten | Seats to meet

• February 27/28 & Embedded World,
March 1 booth: 3-637

• March 20 Proefzitten | Seats to meet

www.sioux.eu

Sioux 2018 | Confidential 5

DRINKS

Source of
your technology

www.sioux.eu

