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Why Julia?
14 February 2012 | Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

In short, because we are greedy.
We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl 

hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can't 

grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming 

language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine 

learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some 

aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We 

want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. 

We want something as usable for general programming as Python, as easy for statistics as R, as natural for string 

processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something 

that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled.

(Did we mention it should be as fast as C?)

While we're being demanding, we want something that provides the distributed power of Hadoop — without the kilobytes 

of boilerplate Java and XML; without being forced to sift through gigabytes of log files on hundreds of machines to find our 

bugs. We want the power without the layers of impenetrable complexity. We want to write simple scalar loops that compile 

down to tight machine code using just the registers on a single CPU. We want to write A*B and launch a thousand 

computations on a thousand machines, calculating a vast matrix product together.

We never want to mention types when we don't feel like it. But when we need polymorphic functions, we want to use 

generic programming to write an algorithm just once and apply it to an infinite lattice of types; we want to use multiple 

dispatch to efficiently pick the best method for all of a function's arguments, from dozens of method definitions, providing 

common functionality across drastically different types. Despite all this power, we want the language to be simple and 

clean.

All this doesn't seem like too much to ask for, does it?

Even though we recognize that we are inexcusably greedy, we still want to have it all. About two and a half years ago, we 

set out to create the language of our greed. It's not complete, but it's time for an initial[1] release — the language we've 

created is called Julia. It already delivers on 90% of our ungracious demands, and now it needs the ungracious demands 

of others to shape it further. 

So, if you are also a greedy, 
unreasonable, demanding 
programmer, we want you to give it 
a try.
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https://julialang.org/blog/2012/02/why-we-created-julia/#fndef:1
https://julialang.org/


The Unreasonable 
Effectiveness of 
Mathematics
Algorithms everywhere
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My grudge with modern C++
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It’s verbose and does not look like math!

Multiple dispatch in C++



My grudge with Python
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75x higher energy consumption!



My grudge with Python
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Oh…and
It’s verbose and does not look like math!

75x higher energy consumption!



Julia = performance software looking like math
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https://biaslab.github.io/RxInfer.jl/






This intro

Deepak Vincchi on Juliahub

Question round

Matthijs Cox and Keith Myerscough on 
Julia in the Eindhoven practice

Chris Rackauckas on SciML
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Why Julia in High-Tech Industry?
Scientific Machine Learning

April, 2023



Scientific Machine Learning
Mixing Data and Models



Auto-Completing Models with Machine Learning

Universal Differential Equations



Let’s dive in a bit!
Standard Machine Learning: Learn the whole model

u’=NN(u) trained on 21 days of 
data

Can fit, but not enough information 
to accurately extrapolate

Does not have the correct 
asymptotic behavior

More examples of this issue:

Ridderbusch et al. "Learning ODE Models with Qualitative 
Structure Using Gaussian Processes."



Universal ODE

Replace 
Unknown 

Portion

Replace 
Unknown 

Portion

Infection rates: known
From disease quantities

Percentage of cases
known to be severe,
can be estimated

Exposure:
Unknown



Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term:
I * 0.10234428543435758 + S/N * I * 0.11371750552005416 + (S/N) ^ 2 * I * 0.12635459799855597

Replace 
Unknown 

Portion

Replace 
Unknown 

Portion

Sparsity improves 
generalizability!



Scientific Machine Learning: Improving Predictions with Less Data

Dandekar, R., Rackauckas, C., & Barbastathis, G. (2020). A machine 
learning-aided global diagnostic and comparative tool to assess effect of 
quarantine control in COVID-19 spread. Patterns, 1(9), 100145.



Accurate Model Extrapolation Mixing in Physical Knowledge

Automated discovery of geodesic 
equations from LIGO black hole 
data: run the code yourself!

https://github.com/Astroinformati
cs/ScientificMachineLearning/blob
/main/neuralode_gw.ipynb

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital 
dynamics of binary black hole systems from gravitational 
wave measurements. Physical Review Research, 3(4), 
043101.



Universal Differential Equations Build Earthquake-Safe Buildings

“Scientific Machine Learning 
for Earthquake-Safe Buildings”

Structural identification with 
physics-informed neural 
ordinary differential equations. 

Lai, Zhili, Mylonas, Charilaos, 
Nagarajaiah, Staish, Chatzi, 
Eleni



Universal Differential Equations Predict Chemical Processes

Santana, V. V., Costa, E., Rebello, C. M., Ribeiro, 
A. M., Rackauckas, C., & Nogueira, I. B. (2023). 
Efficient hybrid modeling and sorption model 
discovery for non-linear 
advection-diffusion-sorption systems: A 
systematic scientific machine learning approach. 
arXiv preprint arXiv:2303.13555.



Universal Differential Equations Generate More Accurate Models 
of Battery Degradation

Researchers at CMU Used 
Universal Differential Equations to 
Improve Models of Battery 
Degradation to Suggest Better 
Batter Materials

“Universal Battery Performance 
and Degradation Model for Electric 
Aircraft”

Nills, Sripad, Fredericks, 
Gutenberg, Charles, Frank, 
Viswanathan



DeepNLME: Integrate neural networks into traditional NLME modeling
DeepNLME is SciML-enhanced modeling for clinical trials

• Automate the discovery of predictive 
covariates and their relationship to 
dynamics

• Automatically discover dynamical 
models and assess the fit

• Incorporate big data sources, such as 
genomics and images, as predictive 
covariates



From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data 
(covariates)

Covariate
s

Structural Model 
(pre)

Dynamic
s

 

 

Requires special fitting procedures (Pumas)



We have been using Pumas software for our 
pharmacometric needs to support our development 
decisions and regulatory submissions. 
Pumas software has surpassed our expectations on its accuracy and ease of use. We are 
encouraged by its capability of supporting different types of pharmacometric analyses within 
one software. Pumas has emerged as our "go-to" tool for most of our analyses in recent 
months. We also work with Pumas-AI on drug development consulting. We are impressed by 
the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on 
modeling and simulation projects across our pipeline spanning investigational therapeutics 
and vaccines at various stages of clinical development

Husain A. PhD (2020)
Director, Head of Clinical Pharmacology and Pharmacometrics, 
Moderna Therapeutics, Inc

The Impact of Pumas (PharmacUtical Modeling And Simulation)

“ Built on SciML



From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data 
(covariates)

Covariate
s

Structural Model 
(pre)

Dynamic
s

 

 

How can we find 
these models?



From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data 
(covariates)

Covariate
s

Structural Model 
(pre)

Dynamic
s

 

How can we find 
these models?

Idea: Parameterize the model such that the models can 
be neural networks, where the weights of the neural 

networks are fixed effects!

Indirect learning of unknown functions!



DeepNLME in Practice: Data Mining for Predictive Covariates

Automate the discovery of covariate 
models

• Train convolutional neural networks to 
incorporate images as covariates

• Train transformer models to utilize natural 
language processing on electronic health 
records

• Utilize automated model discovery to 
prune genomics data to find the predictive 
subset 

Utilize GPU acceleration for neural 
networks

Currently being tested on clinical trial 
data



DeepNLME: Automated Construction of Patient-Specific 
Pharmacological Models for Individualized Dosing

Award by International Society of Pharmacometrics
Currently being tested in clinical trials!



Julia Computing Confidential

Scientific Machine Learning Gives More Realistic Results than Pure ML

Physically-Informed Machine Learning

Using knowledge of the physical forms as 
part of the design of the neural networks.

New Architecture: DigitalEcho

Smoother, more accurate results

ln(x) ex

https://docs.google.com/file/d/1ohlgF8d0gGtRweNDvOqHKbTX2i9b37pe/preview


3D simulations are 
high resolution but 
too expensive.

Can we learn faster 
models?

High fidelity surrogates of ocean columns for climate models

Ramadhan, Ali, John Marshall, Andre Souza, 
Gregory LeClaire Wagner, Manvitha Ponnapati, 
and Christopher Rackauckas. "Capturing 
missing physics in climate model 
parameterizations using neural differential 
equations." arXiv preprint 
arXiv:2010.12559 (2022).



Derive a 1D approximation to 
the 3D model

Incorporate the “convective 
adjustment”

Training against 
datasets: only okay

Neural Networks Infused into Known Partial Differential Equations



Simulation + Machine Learning = Success

Integrating the 
simulator into training!



SciML: A Pervasive Ecosystem of Well-Documented 
Differentiable Packages

All are compatible with Neural Networks and Scientific Machine Learning

The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface
 

NonlinearSolve.jl: Unified Nonlinear Solver 
Interface  

DifferentialEquations.jl: Unified Interface for all 
Differential Equations  

 

Optimization.jl: Unified Optimization Interface
 

Integrals.jl: Unified Quadrature Interface
 

Unified Partial Differential Equation Interface
 



SciML Docs: Comprehensive Documentation of Differentiable 
Simulation



Why is Julia leading
Scientific Machine Learning?

April, 2023



Productivity vs. Performance



DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm 
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential 
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant 
and feature-rich ecosystem for solving differential equations in julia." Journal 
of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential 
equation APIs for accelerated algorithm development and benchmarking." 
Advances in Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network



New Parallelized GPU ODE Parallelism: 20x-100x Faster than 
Jax and PyTorch

Matches State of the Art on CUDA, but also 
works with AMD, Intel, and Apple GPUs

Paper coming soon…



Understanding Julia’s Performance:
Why is a JIT on Python not enough?

Julia for Biologists (Nature Methods)



Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than 
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A TorchSDE

2 contributors with more 
than one contribution (last 
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A



Understanding Julia’s Development Speed:
Why are Julia packages growing faster and better tested?

Julia Scientific Computing Julia Machine Learning Normal Python PyTorch

ODE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

SciPy.odeint

~5 developers

Torchdiffeq

1 contributor with more than 
one contribution

SDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A TorchSDE

2 contributors with more 
than one contribution (last 
commit July 2021)

DDE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A

DAE Solver DifferentialEquations.jl

>100 Contributors

DifferentialEquations.jl

>100 Contributors

N/A N/A



Understanding Julia’s Package Ecosystem:
Can Composability of Features be Automatic?



Understanding Julia’s Package Ecosystem:
Can Composability of Features be Automatic?



One Language: More Performance

Goal: Learn to predict patient behavior (dynamics) from simple data 
(covariates)

Covariates

Structural Model 
(pre)

Dynamics

 

 

Requires special fitting procedures (Pumas)



Julia is Building Tools for 
High-Tech Enterprise

April, 2023



JuliaSim at a Glance

All in a point-and-click GUI



Generate Digital Twins 
and calibrate models

Tune nonlinear controllers
Deploy to embedded hardware



Power of the Cloud: Point and Click GUI Doesn’t Sacrifice Performance

Mix surrogate generation with cloud compute:
Train surrogates in the time of 5-8 runs!



10/11/2022
Brad Carman

Catapult 
Project



Instron Hydropuls Catapult Introduction

prediction 
software



Model History: >10,000x over Simulink, and Beyond

2014

• I joined Instron

• Built Implicit Newton/Euler 
Equation Based model in pure 
Matlab with inverse and subset 
model generator using 
Symbolic Toolbox

• Increased model accuracy with 
elimination of assumptions and 
increased complexity

• Worked well, but…

• Slow

• Hard to update and 
maintain

2000

• Inverse Model: Transfer 
functions

• Forward Model: Simulink

2017

• Attempted to move to 
SimScape

• Successfully transitioned 
model with improved speed, 
but required many 
workarounds and hacks

• Never released…

2020

• Moved to Julia

• Developed EmbeddedJulia 
library, 
ModelingToolkitComponents.jl 
and successfully transitioned 
model to ModelingToolkit.jl

Matlab2CSharp and SimScape Manager

2.5kHz 10kHz

>1000x performance improvements
over Simulink!



The Julia implementation is 6x faster than Dymola for the full 
cycle simulation.

● Dymola reference model: 35.3 s 
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant 

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times 
between 10x-95x over the Julia baseline. Acceleration depends 
on the size of the reservoir in the CTESN. The surrogate 
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff 
vapor-compression cycle 
model 

Total speedup over Dymola: 60-570x

Training set size Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E
 Accelerated Simulation of Building Energy Efficiency



NASA Launch Services:
Deploying Julia to Replace Simulink

Day long cluster compute analysis turned into an interactive webapp!
Youtube: Modeling Spacecraft Separation Dynamics in Julia - Jonathan Diegelman



US Air Force 
Research 
Laboratory

1. Robust Controls
2. Optimal control under 

uncertainty
3. Deployment onto 

embedded hardware
4. Nonlinear control of 

unmanned vehicles 
(UAVs / Drones)



JuliaSim Architecture



SciML Open Source Software 
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations 

required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained 
implementations of your method would be valuable, please let us know 
and we can add it to the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter



Public

Sioux Hot or Not
ASML & Sioux & Eindhoven

Keith Myerscough & Matthijs Cox

April 21, 2023
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Public

April 21, 2023 Page 2

Matthijs CoxKeith Myerscough
Physicist & Metrology ArchitectMathware Designer

scientificcoder.com
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www.meetup.com/

julialang-eindhoven

http://www.meetup.com/
http://www.meetup.com/
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Events

* Capacity limited!

Currently looking for new hosts!

Low cost, low key: high fun, high value!

April 21, 2023 Page 4

🗓 🎉 📍 🤩

Sep ’22 Embracing Change HTC 50

Nov ‘22 How to Julia TU/e 46

Jan ’23 Julia for Reals Sioux Labs 37

Feb ’23 Julia Bonus Meetup Philips Stadium 60*

May ‘23 ??? ??? >50



Public

Map of Julia Eindhoven area / contributors

Page 5
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Why Julia for ASML?

April 21, 2023 Page 6
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July 28, 2022 Page 7

ASML makes big systems for tiny patterns

Software and algorithms play a central role

to optimize the machines and processes



Public

Typical ASML Algorithm Development Experience

We have a proven algorithm prototype in research Then we spend years turning it into a product

July 28, 2022 Page 8

Not so excited customer

years later

Excited customer

Why does it take so long?

How can we accelerate?
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The Life of an Algorithm

July 28, 2022 Page 9

Test on data Prototype 

Algorithm

Idea

Product 

Code

Equipment

Application(s)
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The Life of an Algorithm

July 28, 2022 Page 10

Test on data Prototype 

Algorithm

Idea

Product 

Code

~1 year 2 - 4 years

Equipment

Application(s)
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The Life of an Algorithm

July 28, 2022 Page 11

Test on data Prototype 

Algorithm

Idea

Product 

Code

Equipment

Application(s)
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The Life of an Algorithm

July 28, 2022 Page 12

Test on data Prototype 

Algorithm

Idea

Product 

Code

Two language 

problem

Equipment

Application(s)
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The Life of an Algorithm

July 28, 2022 Page 13

Test on data Prototype 

Algorithm

Idea

Product 

Code

Equipment

Application(s)

?
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Technology needs for our algorithms

June 15, 2022 Page 14

Prototype Production

Math
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Julia is designed for the challenge we have at ASML:
fast and easy numerical computing

April 21, 2023 Page 15

Great for Functionals All we need

Plots Linear Algebra

File IO Machine Learning

And much more; all open source!

Fast

See more: https://julialang.org/benchmarks/

100

101

102

R
u

n
ti
m

e
 r

e
la

ti
v
e

 t
o

 C

on a wide range of common code patterns

typed, compiled and general purpose

Great for Software

expressive and feels dynamic
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Julia progress at ASML

July 28, 2022 Page 16

2019 2020 2021 2022

Find business opportunity

Begin language PoC
Pilot project evaluations

Julians find each 
other at ASML

?

Julia@ASML
Community

Host 5-day 
bootcamps

Multiple local 
teams and cases

Begin formal 
structures

Language evaluation

Proven Julia integration 
in many ASML software 
platforms
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Our discovery of Julia’s unexpected benefits

Julia Package Management

Julia all the way down

C memory alignment makes life easier

Open-source Julia contributions turn you into a legend ☺

Julia’s deployment options are rapidly improving (with ASML funding)

April 21, 2023 Page 17

.jl
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Remember: The Life of an Algorithm

July 28, 2022 Page 19

Test on data Prototype 

Algorithm

Idea

Product 

Code

Two language 

problem

Equipment

Application(s)
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July 28, 2022 Page 20

I want to 

get stuff 

done, fast

I want high 

quality 

code

I want to 

understand 

the domain

I want to code 

better
I don’t want 

to code

Only abstract 

design patterns, 

please

two language problem

==

two culture problem

scientists

software

developers
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July 28, 2022 Page 22

scientists

software

developers

Teach more than Julia!

git, TDD, 

CI/CD

REPL, math,

science

?
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July 28, 2022 Page 23

scientists

software

developers

One big happy Gaussian!
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April 21, 2023 Page 24

We had a two language problem in ASML

We found a technical solution

We built an internal Julia ecosystem

We are solving the 

two culture problem
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We make it together

Functional and software engineers work 

together to build prototype algorithms

Software and functional engineers can 

quickly deploy high quality algorithms

June 15, 2022 Page 25

Excited customer Happy customer

fast



Public
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Show your hands!
Is Julia 

~ HOT ~
or

~ NOT ~
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