

ASSEMBLY

ELECTRONICS

SOFTWARE

Why Julia? 14 February 2012 | Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman

In short, because we are greedy.

We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can't grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as usable for general programming as Python, as easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled.

(Did we mention it should be as fast as C?)

While we're being demanding, we want something that provides the distributed power of Hadoop — without the kilobytes of boilerplate Java and XML; without being forced to sift through gigabytes of log files on hundreds of machines to find our bugs. We want the power without the layers of impenetrable complexity. We want to write simple scalar loops that compile down to tight machine code using just the registers on a single CPU. We want to write A*B and launch a thousand

computations on a thousand machines, calculating a vast matrix product together.

We never want to mention types when we don't feel like it. But when we need polymorphic functions, we want to use generic programming to write an algorithm just once and apply it to an infinite lattice of types; we want to use multiple dispatch to efficiently pick the best method for all of a function's arguments, from dozens of method definitions, providing common functionality across drastically different types. Despite all this power, we want the language to be simple and clean.

All this doesn't seem like too much to ask for, does it?

Even though we recognize that we are inexcusably greedy, we still want to have it all. About two and a half years ago, we set out to create the language of our greed. It's not complete, but it's time for an initial^[1] release — the language we've created is called <u>Julia</u>. It already delivers on 90% of our ungracious demands, and now it needs the ungracious demands of others to shape it further.

So, if you are also a greedy, unreasonable, demanding programmer, we want you to give it a try.

The Unreasonable Effectiveness of Mathematics

Algorithms everywhere

My grudge with modern C++

It's verbose and does not look like math!

template <class fs=""></class>
<pre>struct covariant : overload<fs>{</fs></pre>
<pre>covariant(Fs fs) : overload<fs>(fs){}</fs></pre>
<pre>template<class ts,="" typename="decltype(overload<Fs.</pre"></class></pre>
<pre>decltype(auto) call(Ts&& ts) const{</pre>
if constexpr(std::is_same <decltype(overload<fs></decltype(overload<fs>
return overload <fs>::operator()(std::forwar</fs>
else
return overload <fs>::operator()(std::forwar</fs>
}
template<
class Variants,
class Ret = detail::variant_of_set_t<
<pre>detail::results_of_setn_t<</pre>
overload <fs> const&,</fs>
<pre>detail::variant_types_list_t<variants></variants></pre>
>
>
>
Ret operator()(Variants const& vs){
return pivot([&](auto&& es)->Ret{return call(es
}
};

Multiple dispatch in C++

My grudge with Python

Table 4. Normalized global results for Energy, Time, and Memory

Total							
	Energy	ĺ		Time	1		Mb
(c) C	1.00		(c) C	1.00		(c) Pascal	1.00
(c) Bust	1.00		(c) Rust	1.00		(c) Fascar	1.00
(c) C++	1.34		(c) C++	1.56		(c) C	1.17
(c) Ada	1.70		(c) Ada	1.85		(c) Fortran	1.24
(y) Java	1.98		(v) Java	1.89		(c) C++	1.34
(c) Pascal	2.14		(c) Chapel	2.14		(c) Ada	1.47
(c) Chapel	2.18		(c) Go	2.83		(c) Rust	1.54
(v) Lisp	2.27		(c) Pascal	3.02		(v) Lisp	1.92
(c) Ocaml	2.40		(c) Ocaml	3.09		(c) Haskell	2.45
(c) Fortran	2.52		(v) C#	3.14		(i) PHP	2.57
(c) Swift	2.79		(v) Lisp	3.40		(c) Swift	2.71
(c) Haskell	3.10		(c) Haskell	3.55		(i) Python	2.80
(v) C#	3.14		(c) Swift	4.20		(c) Ocaml	2.82
(c) Go	3.23		(c) Fortran	4.20		(v) C#	2.85
(i) Dart	3.83		(v) F#	6.30		(i) Hack	3.34
(v) F#	4.13		(i) JavaScript	6.52		(v) Racket	3.52
(i) JavaScript	4.45		(i) Dart	6.67		(i) Ruby	3.97
(v) Racket	7.91		(v) Racket	11.27		(c) Chapel	4.00
(i) TypeScript	21.50		(i) Hack	26.99		(v) F#	4.25
(i) Hack	24.02		(i) PHP	27.64		(i) JavaScript	4.59
(i) PHP	29.30		(v) Erlang	36.71		(i) TypeScript	4.69
(v) Erlang	42.23		(i) Jruby	43.44		(v) Java	6.01
(i) Lua	45.98		(i) TypeScript	46.20		(i) Perl	6.62
(i) Iruba	46.54		(i) Ruby	59.34		(i) Lua	6.72
(i) Ruby	69.91		(i) Perl	65.79		(v) Erlang	7.20
(i) Python	75.88		(i) Python	71.90		(i) Dart	8.64
All Dar	50 B		(i) Lua	82.91		(i) Jruby	19.84

75x higher energy consumption!

My grudge with Python

Table 4. Normalized global results for Energy, Time, and Memory

75x	higher	energy	consumption!

Oh...**and** It's verbose and does not look like math!

Total							
	Energy			Time			Mb
(c) C	1.00		(c) C	1.00		(c) Pascal	1.00
(c) Rust	1.03		(c) Rust	1.04		(c) Go	1.05
(c) C++	1.34		(c) C++	1.56		(c) C	1.17
(c) Ada	1.70		(c) Ada	1.85		(c) Fortran	1.24
(v) Java	1.98		(v) Java	1.89		(c) C++	1.34
(c) Pascal	2.14		(c) Chapel	2.14		(c) Ada	1.47
(c) Chapel	2.18		(c) Go	2.83		(c) Rust	1.54
(v) Lisp	2.27		(c) Pascal	3.02		(v) Lisp	1.92
(c) Ocaml	2.40		(c) Ocaml	3.09		(c) Haskell	2.45
(c) Fortran	2.52		(v) C#	3.14		(i) PHP	2.57
(c) Swift	2.79		(v) Lisp	3.40		(c) Swift	2.71
(c) Haskell	3.10		(c) Haskell	3.55		(i) Python	2.80
(v) C#	3.14		(c) Swift	4.20		(c) Ocaml	2.82
(c) Go	3.23		(c) Fortran	4.20		(v) C#	2.85
(i) Dart	3.83		(v) F#	6.30		(i) Hack	3.34
(v) F#	4.13		(i) JavaScript	6.52		(v) Racket	3.52
(i) JavaScript	4.45		(i) Dart	6.67		(i) Ruby	3.97
(v) Racket	7.91		(v) Racket	11.27		(c) Chapel	4.00
(i) TypeScript	21.50		(i) Hack	26.99		(v) F#	4.25
(i) Hack	24.02		(i) PHP	27.64		(i) JavaScript	4.59
(i) PHP	29.30		(v) Erlang	36.71		(i) TypeScript	4.69
(v) Erlang	42.23		(i) Jruby	43.44		(v) Java	6.01
(i) Lua	45.98		(i) TypeScript	46.20		(i) Perl	6.62
(i) Imby	46.54		(i) Ruby	59.34		(i) Lua	6.72
(i) Ruby	69.91		(i) Perl	65.79		(v) Erlang	7.20
(i) Python	75.88		(i) Python	71.90		(i) Dart	8.64
Ch Dave	70.5		(i) Lua	82.91		(i) Jruby	19.84

Julia = performance software looking like math

Program

This intro

Deepak Vincchi on Juliahub

Chris Rackauckas on SciML

matthijs Cox and Keith Myerscough on Julia in the Eindhoven practice

Question round

-0

Why Julia in High-Tech Industry? Scientific Machine Learning

April, 2023

Scientific Machine Learning Mixing Data and Models

·**SO**·JuliaHub

Julia .. SIM

Auto-Completing Models with Machine Learning

Let's dive in a bit! Standard Machine Learning: Learn the whole model

Julia ..

u'=NN(u) trained on 21 days of data

Can fit, but not enough information to accurately extrapolate

Does not have the correct asymptotic behavior

More examples of this issue:

Ridderbusch et al. "Learning ODE Models with Qualitative Structure Using Gaussian Processes."

SIM Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term: | * 0.10234428543435758 + S/N * I * 0.11371750552005416 + (S/N) ^ 2 * I * 0.12635459799855597

Scientific Machine Learning: Improving Predictions with Less Data

Julia ..

Dandekar, R., Rackauckas, C., & Barbastathis, G. (2020). A machine learning-aided global diagnostic and comparative tool to assess effect of quarantine control in COVID-19 spread. Patterns, 1(9), 100145.

Julia .. SIM

Accurate Model Extrapolation Mixing in Physical Knowledge

Upon denoting $\mathbf{x} = (\phi, \chi, p, e)$, we propose the following family of UDEs to describe the two-body relativistic dynamics:

$$\dot{\phi} = \frac{(1 + e\cos(\chi))^2}{Mp^{3/2}} (1 + \mathcal{F}_1(\cos(\chi), p, e)), \qquad (5a)$$

$$\dot{\chi} = \frac{(1 + e\cos(\chi))^2}{Mp^{3/2}} \left(1 + \mathcal{F}_2(\cos(\chi), p, e) \right), \tag{5b}$$

$$\dot{p} = \mathcal{F}_3(p, e), \tag{5c}$$
$$\dot{e} = \mathcal{F}_4(p, e), \tag{5d}$$

Keith, B., Khadse, A., & Field, S. E. (2021). Learning orbital dynamics of binary black hole systems from gravitational wave measurements. Physical Review Research, 3(4), 043101.

Automated discovery of geodesic equations from LIGO black hole data: run the code yourself!

https://github.com/Astroinformati cs/ScientificMachineLearning/blob /main/neuralode_gw.ipynb

.;⊙·JuliaHub

Universal Differential Equations Build Earthquake-Safe Buildings

"Scientific Machine Learning for Earthquake-Safe Buildings"

Julia..

Structural identification with physics-informed neural ordinary differential equations.

Lai, Zhili, Mylonas, Charilaos, Nagarajaiah, Staish, Chatzi, Eleni

Figure 12: Comparison of time history of the response for displacement $x_1(t)$ and velocity $\dot{x}_1(t)$ for the NSD experiment (Phase 1).

Universal Differential Equations Predict Chemical Processes

Julia.

Langmuir isotherm - LDF

Universal Differential Equations Generate More Accurate Models of Battery Degradation

Researchers at CMU Used Universal Differential Equations to Improve Models of Battery Degradation to Suggest Better Batter Materials

"Universal Battery Performance and Degradation Model for Electric Aircraft"

Nills, Sripad, Fredericks, Gutenberg, Charles, Frank, Viswanathan

DeepNLME: Integrate neural networks into traditional NLME modeling DeepNLME is SciML-enhanced modeling for clinical trials

- Automate the discovery of predictive covariates and their relationship to dynamics
- Automatically discover dynamical models and assess the fit
- Incorporate big data sources, such as genomics and images, as predictive covariates

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

The Impact of Pumas (PharmacUtical Modeling And Simulation)

We have been using Pumas software for our pharmacometric needs to support our development decisions and regulatory submissions.

Pumas software has surpassed our expectations on its accuracy and ease of use. We are encouraged by its capability of supporting different types of pharmacometric analyses within one software. **Pumas has emerged as our "go-to" tool for most of our analyses in recent months.** We also work with Pumas-AI on drug development consulting. We are impressed by the quality and breadth of the experience of Pumas-AI scientists in collaborating with us on modeling and simulation projects across our pipeline spanning investigational therapeutics and vaccines at various stages of clinical development

Husain A. PhD (2020) Director, Head of Clinical Pharmacology and Pharmacometrics, *Moderna Therapeutics, Inc*

messenger therapeutics

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

DeepNLME in Practice: Data Mining for Predictive Covariates

model = @model begin

@param begin

- θ ∈ VectorDomain(lower=[0.1,0.0008,0.0040.1],upper=[5.0,0.5,0.9,5.0])
- $\Omega \in PSDDomain(3)$
- σ^2 _add \in RealDomain(lower=0.001, init=sqrt(0.388))
- p1 ∈ NeuralDomain(FastChain(FastDense(2,50,tanh),FastDense(50,1),(x,p)->x.^2))
- p2 ∈ NeuralDomain(FastChain(FastDense(2,50,tanh),FastDense(50,1),(x,p)->x.^2))

```
end
```

```
(arandom begin \eta \sim MvNormal(\Omega) end
```

@pre begin

```
Ka = SEX == 0 ? θ[1] + η[1] : θ[4] + η[1]
K = nn1([θ[2],η[2]],p1)[1]
CL = nn2([θ[3]*WT,η[3]],p2)[1]
Vc = CL/K
SC = CL/K/WT
end
```

@covariates SEX WT
@vars begin conc = Central / SC end
@dynamics Depots1Central1
@derived begin dv ~ @. Normal(conc, sqrt(σ²_add)) end
end

Utilize GPU acceleration for neural networks

Automate the discovery of covariate models

- Train convolutional neural networks to incorporate images as covariates
- Train transformer models to utilize natural language processing on electronic health records
- Utilize automated model discovery to prune genomics data to find the predictive subset

Currently being tested on clinical trial data

DeepNLME: Automated Construction of Patient-Specific Pharmacological Models for Individualized Dosing

Julia ...

Award by International Society of Pharmacometrics Currently being tested in clinical trials!

Scientific Machine Learning Gives More Realistic Results than Pure ML

WILLIAMS RACING

Physically-Informed Machine Learning

Using knowledge of the physical forms as part of the design of the neural networks.

New Architecture: DigitalEcho

Smoother, more accurate results

High fidelity surrogates of ocean columns for climate models

3D simulations are high resolution but too expensive.

Can we learn faster models?

Ramadhan, Ali, John Marshall, Andre Souza, Gregory LeClaire Wagner, Manvitha Ponnapati, and Christopher Rackauckas. "Capturing missing physics in climate model parameterizations using neural differential equations." *arXiv preprint arXiv:2010.12559* (2022).

Neural Networks Infused into Known Partial Differential Equations

Training against datasets: only okay

Simulation + Machine Learning = Success

SciML: A Pervasive Ecosystem of Well-Documented Differentiable Packages

LinearSolve.jl: Unified Linear Solver Interface

$$A(p)x = b$$

NonlinearSolve.jl: Unified Nonlinear Solver Interface f(u, p) = 0

DifferentialEquations.il: Unified Interface for all

Differential Equations
$$u' = f(u, p, t)$$

 $du = f(u, p, t)dt + g(u, p, t)dW_t$

The SciML Common Interface for Julia Equation Solvers

All are compatible with Neural Networks and Scientific Machine Learning

Optimization.jl: Unified Optimization Interface

minimize f(u, p)subject to $g(u, p) \le 0, h(u, p) = 0$

Integrals.jl: Unified Quadrature Interface

 $\int_{lb}^{ub} f(t,p)dt$

Unified Partial Differential Equation Interface

$$u_t = u_{xx} + f(u)$$
$$u_{tt} = u_{xx} + f(u)$$
$$\vdots$$

SciML Docs: Comprehensive Documentation of Differentiable Simulation

	<u> DLVERS</u> ▲ ANALYSIS ▼ MACHINE LEARNING ▼	DEVELOPER TOOLS -	Search				
EQUATION SOLVERS	INVERSE PROBLEMS /	PDE SOLVERS	THIRD-PARTY PDE SOLVERS				
LinearSolve	ESTIMATION	MethodOfLines	Trixi				
NonlinearSolve	SciMLSensitivity	NeuralPDE	Gridap				
DifferentialEquations	DiffEqParamEstim	NeuralOperators	ApproxFun				
Integrals	DiffEqBayes	FEniCS	VoronoiFVM				
Optimization		HighDimPDE					
JumpProcesses		DiffEqOperators					
	or the highest performance and parallel impl	ementations one can find.					
• Where to Start?	Scientific Machine Learning (SciML) = Scient	ific Computing + Machine Learning					
Getting Started							
Getting Started with Julia's SciML	Where to Start?						
New User Tutorials	• Want to get started running some code? Check out the Getting Started tutorials.						
Comparison With Other Tools	What is SciML? Check out our Overview.						
Version v0.2	Want to see some cool end-to-end examples? Check out the Extended Tutorials.						
VCI 1011 VU.2	Curious about our performance claims? Check out the SciML Open Benchmarks.						

-0

Why is Julia leading Scientific Machine Learning?

April, 2023

Productivity vs. Performance

Foundation: Fast Differential Equation Solvers

- 1. Speed
- 2. Stability
- 3. Stochasticity
- 4. Adjoints and Inference
- 5. Parallelism

DifferentialEquations.jl is generally:

- 50x faster than SciPy
- 50x faster than MATLAB
- 100x faster than R's deSolve

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in julia." Journal of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

New Parallelized GPU ODE Parallelism: 20x-100x Faster than Jax and PyTorch

Paper coming soon...

Matches State of the Art on CUDA, but also works with AMD, Intel, and Apple GPUs

Understanding Julia's Performance: Why is a JIT on Python not enough?

Julia for Biologists (Nature Methods)

С

Theoretically inferred and real-time calculation of f([x,y])

	Time of array allocation	+	Time of floating point operations	+	Time of function calls	=	Inferred time	Real time
Julia			8 × 2 ns	+	1 × 5 ns	=	21 ns	20 ns
Python	300 ns	+	8 × 2 ns	+	8 × 150 ns	=	1,516 ns	1,510 ns
Numba	300 ns	+	8 × 2 ns	+	1 × 150 ns	=	466 ns	425 ns

Understanding Julia's Development Speed: Why are Julia packages growing faster and better tested?

	Julia Scientific Computing	Julia Machine Learning	Normal Python	PyTorch
ODE Solver	DifferentialEquations.jl	DifferentialEquations.jl	SciPy.odeint	Torchdiffeq
	>100 Contributors	>100 Contributors	~5 developers	1 contributor with more than one contribution
SDE Solver	DifferentialEquations.jl	DifferentialEquations.jl	N/A	TorchSDE
	>100 Contributors	>100 Contributors		2 contributors with more than one contribution (last commit July 2021)
DDE Solver	DifferentialEquations.jl	DifferentialEquations.jl	N/A	N/A
	>100 Contributors	>100 Contributors		
DAE Solver	DifferentialEquations.jl	DifferentialEquations.jl	N/A	N/A
	>100 Contributors	>100 Contributors		

Why	Und v are Jul	Julia package for machine la	Julia	eed: ter tested?
	Julia S	learning	standard situations	PyTorch
ODE Solver	Differe			Torchdiffeq
	>100 (Corporate needs you t	to find the differences	1 contributor with more than one contribution
SDE Solver	Differe			TorchSDE
	>100 (6	2 contributors with more than one contribution (last commit July 2021)
DDE Solver	Differe	N N	ASA	N/A
	>100 (NY I		
DAE Solver	Differe			N/A
	>100 (IN AN		
	maflip.	They're the	same picture.	

Understanding Julia's Package Ecosystem: Can Composability of Features be Automatic?

DifferentialEquations.jl and Measurements.jl 🖋

Usage diffeq

giordano

Oct '17

Today I was asked whether it was possible to solve in Julia differential equations involving numbers with uncertainties. Of course the answer is yes. What I find really amazing about Julia is that the two packages don't know anything about each other, yet they can work together without any effort. Here is an short example based on this tutorial (23): https://nbviewer.jupyter.org/gist/giordano/e82a3959d8f64301129d64d004e10b4e (99)

Understanding Julia's Package Ecosystem: Can Composability of Features be Automatic?

using DifferentialEquations, Measurements, Plots

```
pyplot()
```

```
g = 9.79 \pm 0.02; # Gravitational constants L = 1.00 \pm 0.01; # Length of the pendulum
```

```
#Initial Conditions
```

```
u_{0} = [0 \pm 0, \pi / 60 \pm 0.01] # Initial speed and initial angle tspan = (0.0, 6.3)
```

```
#Define the problem
```

```
function simplependulum(du,u,p,t)

\theta = u[1]

d\theta = u[2]

du[1] = d\theta

du[2] = -(g/L)*\theta

end
```

```
#Pass to solvers
prob = ODEProblem(simplependulum, uo, tspan)
sol = solve(prob, Tsit5(), reltol = 1e-6)
```

```
# Analytic solution
```

```
u = u_0[2] .* cos.(sqrt(g / L) .* sol.t)
```

```
plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")
```


One Language: More Performance

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

·**SO**·JuliaHub

-0

Julia is Building Tools for High-Tech Enterprise

April, 2023

JuliaSim at a Glance

Design	Discover	Calibrate	Control	Surrogatize
 Build realistic physical models with minimal code Run simulations 100x faster 	 Use Machine Learning to autocomplete models Discover missing physics 	 Turn models into Digital Twins Robust nonlinear fitting with automatic differentiation 	 Build robust nonlinear controls Deploy Model-Predictive Controllers (MPC) 	 Train neural networks to match models Accelerate fast simulations by another 100x
			A A	

All in a point-and-click GUI

Tune nonlinear controllers Deploy to embedded hardware

Generate Digital Twins and calibrate models

System parameters

ID	Lower Bound	Upper Bound	Nominal	Tunable
k1	1	100	10	
k2	10	50	25	
k3	5	250	125	
k_drug	10	50	25	

·**So**·JuliaHub

Catapult Project

10/11/2022 Brad Carman

Instron Hydropuls Catapult Introduction

·**SO**·JuliaHub

Model History: >10,000x over Simulink, and Beyond

7	V
	_

2000

Inverse Model: Transfer
 functions

2.5kHz

Forward Model: Simulink

20	11	4
24	11,	۰.

- l joined Instron
- Built Implicit Newton/Euler Equation Based model in pure **Matlab** with inverse and subset model generator using Symbolic Toolbox
- Increased model accuracy with elimination of assumptions and increased complexity
- Worked well, but...
 - Slow
 - Hard to update and maintain

>1000x performance improvements over Simulink!

2017

10kHz

- Attempted to move to **SimScape**
- Successfully transitioned model with improved speed, but required many workarounds and hacks

2020

- Moved to Julia
- Developed EmbeddedJulia library, ModelingToolkitComponents.jl and successfully transitioned model to ModelingToolkit.jl

ARPA-E Accelerated Simulation of Building Energy Efficiency

The Julia implementation is 6x faster than Dymola for the full cycle simulation.

- Dymola reference model: 35.3 s
- Julia (as close to) equivalent model: 5.8 s
- Could be due to details such as the linear solvers, the refrigerant property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times between 10x-95x over the Julia baseline. Acceleration depends on the size of the reservoir in the CTESN. **The surrogate approximates 20 of the observables.**

Training set size	Reservoir size	Prediction time	Speedup over baseline
100	1000	0.06 s	95x
1000	2000	0.56 s	10x

Error is < 5% in all cases.

Total speedup over Dymola: 60-570x

NASA Launch Services: Deploying Julia to Replace Simulink

Day long cluster compute analysis turned into an interactive webapp! Youtube: Modeling Spacecraft Separation Dynamics in Julia - Jonathan Diegelman

US Air Force Research Laboratory

- 1. Robust Controls
- 2. Optimal control under uncertainty
- 3. Deployment onto embedded hardware
- Nonlinear control of unmanned vehicles (UAVs / Drones)

Year of autonomy in Alaskan glaciers, flight, Earth orbit, cislunar space and Mars

BY KERIANNE HOBBS

The **Intelligent Systems Technical Committee** works to advance the application of computational problem-solving technologies and methods to aerospace systems.

In June, the U.S. Air Force Research Laboratory's Intelligent Control and Evaluation of Teams flight test program flew an uncrewed aerial system in coordination with ground systems to provide aerial support in virtually contested environments. The flight test team was able to demonstrate this on a vertical takeoff and landing vehicle with both electric and conventional fuel propulsion systems onboard. The UAS was able to plan and execute these missions autonomously using onboard hardware. It was the first time the Julia programming language was flown on the embedded hardware - algorithms were precompiled ahead of time. The algorithms used to perform the various missions involved feedback control, mixed-integer linear programming and optimal control.

In November, NASA's Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment arrived at its near-rectilinear halo orbit around the moon. Mission controllers regained control of CAPSTONE in October after the spacecraft began spinning in September, likely due to a stuck thruster valve. Among the mission objectives are demonstrating autonomous orbit determination in cislunar space. Using ranging measurements from the Lunar Reconnaissance Orbiter, the CAPSTONE spacecraft can determine its orbital position and perform stationkeeping maneuvers without the need for Earth-based localization, paving a way for greater numbers of more independent cislunar and deep space probes.

JuliaSim Architecture

SciML Open Source Software Organization sciml.ai

- DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...
- DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
- ModelingToolkit.jl: 15,000x Simulink
- Catalyst.jl: >100x SimBiology, gillespy, Copasi
- DataDrivenDiffEq.jl: >10x pySindy
- NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
- NeuralOperators.jl: ~3x original papers (more optimizations required)
- ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
- SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
- DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained implementations of your method would be valuable, please let us know and we can add it to the queue.

Democratizing SciML via pedantic code optimization Because we believe full-scale open benchmarks matter

Sioux Hot or Not ASML & Sioux & Eindhoven

Keith Myerscough & Matthijs Cox

April 21, 2023

CREATION DATE: YYYY-MM-DD

Keith Myerscough

Mathware Designer

SIOUX TECHNOLOGIES

Matthijs Cox

Physicist & Metrology Architect

ıblic

julia eindhoven **ASML** scientificcoder.com 2

eindhoven

www.meetup.com/ julialang-eindhoven

Page 3

Events

ï	Č	Ŷ	
Sep '22	Embracing Change	HTC	50
Nov '22	How to Julia	TU/e	46
Jan '23	Julia for Reals	Sioux Labs	37
Feb '23	Julia Bonus Meetup	Philips Stadium	60*
May '23	???	???	>50

* Capacity limited!

Currently looking for new hosts!

Low cost, low key: high fun, high value!

the same 28-2-2022 18-20

Table in a 1.00 STATE STATE and the ANTIN LIN imiter 1140 1.52 The stage of the stage Cartine # 1,000 tingen # 1.000 Auritani a 1.561 Auritania a 14.56 Rotting: 4 1.50 matricate # 14.90 Harting (1.5) Ter Bertine: ± 1,761 Stat Antiber : 120 Trainer Hearthree # 2,001 The American State ALL SAL artan Anertine : 1.35 at liant train \$ 2,00) in Partner \$ 11,00 (karting + 1,60) Perfect P + 8,50 11(1) (1.4) feet 2 (8.8,58 titus e 4.400 intra series

> 1229 1228 1219 1228

Anthe Anthe + 1.41 Anthe Anthe + 1.41 Anthe Antherity + 1.40 Anthe Antherity + 1.40 Anthe Antherity + 1.40 Antherit

talian next (4.2.50) talian next (4.2.50) sected (kurting) (4.3.90 talian next (4.3.90)

> (arting (13.00) (barting (13.00)

Exerctings € 15,000 € 425,54 € 5,00 £ 464,45

1 45.40

1 12" (29cm) [talton (VGGaN) Yeup1] Warander het Groerbed

Foci Totas) Redrag bangeboten Total

 STR 81
 (sc), (

Ve zijn benvesed noar jooe we tro Loat het weten op doeloot. J/reats

Why Julia for ASML?

ASML makes big systems

for tiny patterns

Software and algorithms play a central role to optimize the machines and processes

Typical ASML Algorithm Development Experience

Why does it take so long? How can we accelerate?

We have a proven algorithm prototype in research

Excited customer

years later

Then we spend years turning it into a product

Not so excited customer

ASML July 28, 2022

ASML July 28, 2022

Technology needs for our algorithms

Julia is designed for the challenge we have at ASML: fast and easy numerical computing

Julia progress at ASML

Our discovery of Julia's unexpected benefits

Julia Package Management

Julia all the way down

C memory alignment makes life easier

Open-source Julia contributions turn you into a legend ©

Julia's **deployment options** are rapidly improving (with ASML funding)

Remember: The Life of an Algorithm

One big happy Gaussian!

We make it together

Functional and software engineers work together to build prototype algorithms

Excited customer

Software and functional engineers can quickly deploy high quality algorithms

fast

Happy customer

Public

Show your hands! Is Julia

or NOT ~

